skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "You, Chan Ju"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ramella-Roman, Jessica C; Ma, Hui; Vitkin, I Alex; Elson, Daniel S; Novikova, Tatiana (Ed.)
    We present a method to determine the Mueller matrix of a sample using polarization-entangled photon pairs. One of the photons of a pair goes through a sample and is then subject to a polarization projection measurement. The other photon, which does not go through the sample, is also subject to a polarization projection. The measured quantum correlations are equivalent to polarimetry measurements, where the initial state of the photon going through the sample is determined by the polarization projection on the entangled partner that does not go through the sample. The correspondence with the classical system is acausal because quantum measurements apply to distinct Hilbert spaces. We tested this method with standard optical elements finding excellent agreement with the expectations. Thus it can be used as an alternative to classical Mueller polarimetry for conditions that would be challenging to do otherwise. 
    more » « less
  2. Andrews, D.; Galvez, EJ; Rubinsztein-Dunlop, H. (Ed.)
    There is interest in using photon entanglement in biomedical applications. In one application, polarization-entangled photons pass through brain tissue. The effect of the brain tissue on the photon entanglement is measured via the decoherence that is imparted on the entangled state. Our current method to obtain a measure of the decoherence involves quantum state tomography, where a minimum of 16 measurements are used in conjunction with tomographic optimization to obtain the density matrix representing the state of the photons. In this work we report on a method to avoid tomographic optimization on behalf of a direct measurement of the elements of the density matrix. We make preliminary comparisons between the two methods. 
    more » « less